La teoría matemática del perceptrón es una rama de la inteligencia artificial que se centra en el estudio de los perceptrones, que son modelos matemáticos de neuronas artificiales. El perceptrón es un algoritmo de aprendizaje supervisado que se utiliza para clasificar objetos en diferentes categorías. El modelo se basa en una función discriminante lineal que utiliza pesos y umbrales para separar las diferentes clases de objetos. La función discriminante se calcula como la suma ponderada de las entradas multiplicadas por los pesos, y se compara con un umbral para determinar la clase a la que pertenece el objeto. El perceptrón se puede utilizar para resolver problemas de clasificación binaria y multiclase, y se ha utilizado en una amplia variedad de aplicaciones, como el reconocimiento de caracteres, la detección de spam y la clasificación de imágenes.
Aquí hay una fórmula básica para un perceptrón:
Comentarios
Publicar un comentario