Ir al contenido principal

AI: MATHS: El perceptron (teoría matemática)

 Perceptrón

La teoría matemática del perceptrón es una rama de la inteligencia artificial que se centra en el estudio de los perceptrones, que son modelos matemáticos de neuronas artificiales. El perceptrón es un algoritmo de aprendizaje supervisado que se utiliza para clasificar objetos en diferentes categorías. El modelo se basa en una función discriminante lineal que utiliza pesos y umbrales para separar las diferentes clases de objetos. La función discriminante se calcula como la suma ponderada de las entradas multiplicadas por los pesos, y se compara con un umbral para determinar la clase a la que pertenece el objeto. El perceptrón se puede utilizar para resolver problemas de clasificación binaria y multiclase, y se ha utilizado en una amplia variedad de aplicaciones, como el reconocimiento de caracteres, la detección de spam y la clasificación de imágenes.

Aquí hay una fórmula básica para un perceptrón:




El objetivo del aprendizaje del perceptrón es ajustar los pesos y el sesgo para que la función discriminante pueda separar las diferentes clases de objetos de manera efectiva. Esto se logra mediante el uso de un algoritmo de entrenamiento que ajusta los pesos y el sesgo en función de los errores cometidos por el modelo en la clasificación de los objetos de entrenamiento.


Comentarios

Entradas populares de este blog

[DATA SCIENCE] [R PROGRAMMING] [DATA VISUALIZATION] Explorando Técnicas de Análisis y Visualización de Datos en R

  Introducción En el análisis de datos, la correcta partición y visualización de los datasets es crucial para obtener conclusiones precisas y valiosas. En este artículo, exploraremos diversas técnicas en R para particionar datasets, crear histogramas, scatterplots, boxplots, y ajustar curvas de regresión y suavizado. 1. Partición de Datasets La partición de datasets es una etapa fundamental en el proceso de machine learning. Permite dividir los datos en conjuntos de entrenamiento, validación y prueba para asegurar que nuestros modelos se entrenen y evalúen adecuadamente. Función para Particionar Datasets # Función para automatizar la partición de datasets partition_data <- function(data, target_column, train_ratio = 0.7, validate_ratio = NULL, seed = 123) {   # Establecer la semilla para reproducibilidad   set.seed(seed)      # Crear partición de entrenamiento   training_ids <- createDataPartition(data[[target_column]], p = train_ratio, list = FA...

[Machine Learning][Python][Clasificación] Understanding Support Vector Machines with Python

Support Vector Machines con Python Support Vector Machines con Python Support Vector Machines (SVM) son algoritmos de aprendizaje supervisado muy potentes, a menudo utilizados para problemas de clasificación. Este artículo demuestra cómo utilizar SVM en Python con la biblioteca scikit-learn y proporciona una explicación de la teoría subyacente. 1. Implementación en Python Código en Python: import numpy as np # Biblioteca para trabajar con arreglos y operaciones matemáticas import matplotlib.pyplot as plt # Biblioteca para crear gráficos y visualizaciones from sklearn import datasets # Módulo para cargar y manejar conjuntos de datos estándar from sklearn.model_selection import train_test_split # Función para dividir los datos en entrenamiento y prueba from sklearn.svm import SVC # Clase para implementar Support Vector Machines # 1. Cargar datos # Usaremos el dataset de iris, seleccionando solo dos clases para sim...

[Validación Cruzada] [Machine Learning] [Evaluación de Modelos] [Ciencia de Datos] [R Programming] [Resampling] Validación Cruzada: Concepto y Técnicas Principales

Validación Cruzada: Concepto y Técnicas Principales Validación Cruzada: Concepto y Técnicas Principales La validación cruzada es un conjunto de técnicas utilizadas para evaluar la capacidad de generalización de un modelo de machine learning. Su objetivo principal es determinar cómo de bien puede el modelo desempeñarse con datos no vistos, proporcionando una evaluación más robusta y fiable en comparación con dividir los datos en un simple conjunto de entrenamiento y prueba. Principales Técnicas de Validación Cruzada 1. K-Fold Cross Validation (Validación Cruzada K-Fold) El conjunto de datos se divide en \(k\) particiones o "pliegues" de igual tamaño. El modelo se entrena \(k\) veces: en cada iteración, un pliegue diferente se utiliza como conjunto de prueba y los \(k-1\) pliegues restantes como conjunto de entrenamiento. La métrica final (por ejemplo, precisión, F1, etc.) se c...