Ir al contenido principal

AI:LLM:GREP: Regular expressions using "grep"

The regular expression [ˆa-zA-Z], which we used to avoid embedded instances of "the", implies that there must be some single (although non-alphabetic) character before the the. We can avoid this by specifying that before the the we require either the beginning-of-line or a non-alphabetic character, and the same at the end of the line: 


grep -E "(^|[^a-zA-Z])[tT]he([^a-zA-Z]|^)" wizard_of_oz


 The process we just went through was based on fixing two kinds of errors: false false positives positives, strings that we incorrectly matched like other or there, and false negafalse negatives tives, strings that we incorrectly missed, like The. Addressing these two kinds of errors comes up again and again in implementing speech and language processing systems. Reducing the overall error rate for an application thus involves two antagonistic efforts: 

• Increasing precision (minimizing false positives) 

• Increasing recall (minimizing false negatives)


Some aliases for common ranges, which can be used mainly to save typing:






Comentarios

Entradas populares de este blog

[DATA SCIENCE] [R PROGRAMMING] [DATA VISUALIZATION] Explorando Técnicas de Análisis y Visualización de Datos en R

  Introducción En el análisis de datos, la correcta partición y visualización de los datasets es crucial para obtener conclusiones precisas y valiosas. En este artículo, exploraremos diversas técnicas en R para particionar datasets, crear histogramas, scatterplots, boxplots, y ajustar curvas de regresión y suavizado. 1. Partición de Datasets La partición de datasets es una etapa fundamental en el proceso de machine learning. Permite dividir los datos en conjuntos de entrenamiento, validación y prueba para asegurar que nuestros modelos se entrenen y evalúen adecuadamente. Función para Particionar Datasets # Función para automatizar la partición de datasets partition_data <- function(data, target_column, train_ratio = 0.7, validate_ratio = NULL, seed = 123) {   # Establecer la semilla para reproducibilidad   set.seed(seed)      # Crear partición de entrenamiento   training_ids <- createDataPartition(data[[target_column]], p = train_ratio, list = FA...

[Machine Learning][Python][Clasificación] Understanding Support Vector Machines with Python

Support Vector Machines con Python Support Vector Machines con Python Support Vector Machines (SVM) son algoritmos de aprendizaje supervisado muy potentes, a menudo utilizados para problemas de clasificación. Este artículo demuestra cómo utilizar SVM en Python con la biblioteca scikit-learn y proporciona una explicación de la teoría subyacente. 1. Implementación en Python Código en Python: import numpy as np # Biblioteca para trabajar con arreglos y operaciones matemáticas import matplotlib.pyplot as plt # Biblioteca para crear gráficos y visualizaciones from sklearn import datasets # Módulo para cargar y manejar conjuntos de datos estándar from sklearn.model_selection import train_test_split # Función para dividir los datos en entrenamiento y prueba from sklearn.svm import SVC # Clase para implementar Support Vector Machines # 1. Cargar datos # Usaremos el dataset de iris, seleccionando solo dos clases para sim...

[Validación Cruzada] [Machine Learning] [Evaluación de Modelos] [Ciencia de Datos] [R Programming] [Resampling] Validación Cruzada: Concepto y Técnicas Principales

Validación Cruzada: Concepto y Técnicas Principales Validación Cruzada: Concepto y Técnicas Principales La validación cruzada es un conjunto de técnicas utilizadas para evaluar la capacidad de generalización de un modelo de machine learning. Su objetivo principal es determinar cómo de bien puede el modelo desempeñarse con datos no vistos, proporcionando una evaluación más robusta y fiable en comparación con dividir los datos en un simple conjunto de entrenamiento y prueba. Principales Técnicas de Validación Cruzada 1. K-Fold Cross Validation (Validación Cruzada K-Fold) El conjunto de datos se divide en \(k\) particiones o "pliegues" de igual tamaño. El modelo se entrena \(k\) veces: en cada iteración, un pliegue diferente se utiliza como conjunto de prueba y los \(k-1\) pliegues restantes como conjunto de entrenamiento. La métrica final (por ejemplo, precisión, F1, etc.) se c...