[MACHINE LEARNING] Un breve ejemplo de uso de JupyterLab
En este ejemplo hacemos uso de un dataset clásico y unas funciones básicas muy intuitivas.
Se requiere tener instalado Anaconda y ejecutar este código en Jupyter.
# Check the versions of libraries# Python versionimport sysprint('Python: {}'.format(sys.version))# scipyimport scipyprint('scipy: {}'.format(scipy.__version__))# numpyimport numpyprint('numpy: {}'.format(numpy.__version__))# matplotlibimport matplotlibprint('matplotlib: {}'.format(matplotlib.__version__))# pandasimport pandasprint('pandas: {}'.format(pandas.__version__))# scikit-learnimport sklearnprint('sklearn: {}'.format(sklearn.__version__))# Load librariesimport pandasfrom pandas.plotting import scatter_matriximport matplotlib.pyplot as pltfrom sklearn import model_selectionfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixfrom sklearn.metrics import accuracy_scorefrom sklearn.linear_model import LogisticRegressionfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysisfrom sklearn.naive_bayes import GaussianNBfrom sklearn.svm import SVCurl = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']dataset = pandas.read_csv(url, names=names)print(dataset.head(51))print(dataset.shape)print(dataset.head(51))print(dataset.describe())
Comentarios
Publicar un comentario